Abstract
Existing research in association mining has focused mainly on how to expedite the search for frequently co-occurring groups of items in ldquoshopping cartrdquo type of transactions; less attention has been paid to methods that exploit these ldquofrequent itemsetsrdquo for prediction purposes. This paper contributes to the latter task by proposing a technique that uses partial information about the contents of a shopping cart for the prediction of what else the customer is likely to buy. Using the recently proposed data structure of itemset trees (IT-trees), we obtain, in a computationally efficient manner, all rules whose antecedents contain at least one item from the incomplete shopping cart. Then, we combine these rules by uncertainty processing techniques, including the classical Bayesian decision theory and a new algorithm based on the Dempster-Shafer (DS) theory of evidence combination
Predicting Missing Items in Shopping Carts –j2ee/dotnet
Posted by
Zener
on Friday, October 2, 2009
/
Labels:
Computer Projects,
DotNet projects,
Java Projects
0 comments:
Post a Comment