A Game Theoretical Framework on Intrusion Detection in Heterogeneous Networks –java

Abstract
Due to the dynamic, distributed, and heterogeneous nature of today's networks, intrusion detection systems (IDSs) have become a necessary addition to the security infrastructure and are widely deployed as a complementary line of defense to classical security approaches. In this paper, we address the intrusion detection problem in heterogeneous networks consisting of nodes with different noncorrelated security assets. In our study, two crucial questions are: What are the expected behaviors of rational attackers? What is the optimal strategy of the defenders (IDSs)? We answer the questions by formulating the network intrusion detection as a noncooperative game and performing an in-depth analysis on the Nash equilibrium and the engineering implications behind. Based on our game theoretical analysis, we derive the expected behaviors of rational attackers, the minimum monitor resource requirement, and the optimal strategy of the defenders. We then provide guidelines for IDS design and deployment. We also show how our game theoretical framework can be applied to configure the intrusion detection strategies in realistic scenarios via a case study. Finally, we evaluate the proposed game theoretical framework via simulations. The simulation results show both the correctness of the analytical results and the effectiveness of the proposed guidelines

0 comments: